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Medical Expert Systems-Knowledge Tools
for Physicians
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Recent advances in the field of artificial intelligence have led to the emergence of expert systems,
computational tools designed to capture and make available the knowledge of experts in a field.
Although much of the underlying technology available today is derived from basic research on
biomedical advice systems during the 1970s, medical application packages are thus far generally
unavailable from the young artificial intelligence industry. Medical expert systems will begin to
appear, however, as researchers in medical artificial intelligence continue to make progress in key
areas such as knowledge acquisition, model-based reasoning and system integration for clinical
environments. It is accordingly important for physicians to understand the current state of such
research and the theoretic and logistic barriers that remain before useful systems can be made
available. One experimental system, ONCOCIN, provides a glimpse of the kinds of knowledge-
based tools that willsomedaybe available to physicians.
(Shortliffe EH: Medical expert systems-Knowledge tools for physicians, In Medical informatics
[Special Issue]. West J Med 1986 Dec; 145:830-839)

It was recognized in the early days of the computer age that
our modem computational marvels, originally conceived

as high-performance mathematical calculators, could be
adapted to manipulate text and symbols as well as numbers.
Thus computers became viewed as tools for storing and re-
trieving information, and their use as machines for decision
support became a focus of research and development. Ac-
cepted tools such as MEDLINE later showed that medicine
could benefit significantly from such work.

In the late 1950s scientists first began to suggest that com-
puters might someday play a more active role in helping
medical personnel reach decisions about diagnosis and patient
management. I Instead of viewing computers merely as infor-
mation sources-rather like electronic textbooks-or as tools
for assisting with statistical analysis of large patient data
bases, researchers suggested that computers could actually
use such information, plus observational data about a patient,
to generate individually tailored advice for a specific medical
problem. For much of the next 20 years, the focus of such
work was mathematical, emphasizing probabilistic reasoning
and statistical pattern recognition.2 In the early 1970s, how-
ever, several research groups argued that expert physicians

make high-quality decisions without formal numerical anal-
ysis and that there must be symbolic or conceptual methods
suitable for modeling expert decision making when problems
are ill-structured or when formal statistical data are scarce or
difficult to acquire. They accordingly turned for research
ideas to studies of human problem solving and to the area of
computer science with the closest ties to psychology, namely,
the field of artificial intelligence (Al).

AI had been born in 1956 at a meeting at Dartmouth
College (Hanover, NH) where leading computer scientists
first articulated notions of machine intelligence. Alan Turing,
the famed British mathematician, had suggested an opera-
tional definition for computer-based "intelligent behavior,"3
but it was at the Dartmouth conference that computer scien-
tists first decided to begin active research in the area. The
subsequent early work emphasized the development of gen-
eral problem-solving techniques and, by 1970, Al was epito-
mized by analyses and implementation of humanlike
reasoning strategies, or heuristics, for focusing attention
when solving problems and for maintaining efficient search
through a range of possibilities.

Two pieces of work in the late 1960s provided insights
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MEDICAL EXPERT SYSTEMS

ABBREVIATIONS USED IN TEXT
Al = artificial intelligence
PIP = Present Illness Program

that are credited with a paradigm shift in Al research during
the following decade. These were MACSYMA,4 a system to
help mathematicians solve complex calculus problems in-
volving symbolic integration, and DENDRAL,5 a program
to help chemists identify unknown compounds from their
mass spectral data. These systems differed from earlier Al
work in that their power and utility were derived principally
from their knowledge of a technical domain-that is, from the
fields of expertise of the mathematicians and chemists who
helped build them-rather than from a powerful generalized
inference technique. The recognition that intelligent behavior
by computers would depend on the effective encoding of large
amounts of complex knowledge left Al researchers poised, in
the early 1970s, to work in fields with an inherent emphasis
on the use of expert-level knowledge. Medicine provided a
natural focus for such investigations.

What Is an Expert System?
Four experimental systems are generally regarded as

having started the research field of artificial intelligence in
medicine.6-' These were MYCIN, a program to advise physi-
cians on antimicrobial selection for patients with bacteremia
or meningitis8'9; the Present Illness Program (PIP), a system
that gathered data and generated hypotheses about disease
processes in patients with renal disease10; INTERNIST-1, a
large system to assist with diagnosing complex problems in
general internal medicine,1 and CASNET, an ophthalmology
advisor designed to assess disease states and to recommend
management for patients with glaucoma.12 All four drew on
Al techniques, emphasizing the encoding of large amounts of
specialized medical knowledge acquired from the clinical lit-
erature and from expert collaborators. None used classical
statistical techniques, nor did they base their advice on inter-
pretations of accumulated experience in patient data banks.
On the other hand, each was influenced by earlier Al work on
general problem-solving techniques, and two of the systems
(PIP and INTERNIST-1) explicitly modeled hypotheticode-
ductive behavior,13'14 the familiar process by which physi-
cians formulate tentative hypotheses rapidly after obtaining
the first few pieces of information about a patient and then let
those hypotheses (typically a differential diagnosis) guide fur-
ther data collection and problem solving.

It was this handful of medical systems, plus a geology
advisor known as PROSPECTOR,1` that led to a growing
interest in Al systems that might function as expert consul-
tants. By the late 1970s such systems had become known as
"knowledge-based systems" or "expert systems," terms that
continue in common use. Thus, the term "expert system"
originally implied a computer-based consultation system
using AI techniques to emulate the decision-making behavior
of an expert in a specialized, knowledge-intensive field.'6
The term has subsequently been broadened as the field has
been popularized, so that an expert system's roots in artificial
intelligence research can no longer always be presumed.
There are arguments for calling any decision support system
an expert system if it is designed to give expert-level prob-

lem-specific advice, even if the underlying programming and
analytic techniques differ from the knowledge-based methods
developed by AI researchers.

The explosive popularity of the expert systems notion has
moved much of the applied work in this field from university
research laboratories to the scores of software companies that
have emerged in a fledgling industry since 1980. The suc-
cesses of the technology have been sufficient to attract the
interest of many of the major corporations in the country,
several of which have invested heavily in start-up AI compa-
nies or have sought to develop in-house expertise in the field.
The demand for trained Al scientists has skyrocketed, and one
financial observer group has predicted total US spending on
expert systems at $150 million in 1986, rising to more than
$200 million annually within two years (The Yankee Group,
quoted in Expert Systems User, vol 2, No. 5, August 1986,
p 3). Several new journals and trade magazines have ap-
peared, and the American Association for Artificial Intelli-
gence has grown to a membership of more than 12,000 since
its inception in 1979.

Most expert systems developed by the young artificial
intelligence industry are used internally within the investing
companies. The new technology has generally been used to
gather experiential knowledge that had previously resisted
efforts to encode it using conventional programming tech-
niques. Examples of successful expert system applications in
industrial settings include

* A program that assists with the design of a physical
layout for computing components assembled within a metal
cabinet.

* A system that assists in the interpretation of soil samples
recovered from drilling sites during oil exploration.

* A financial management advisor to assist stock brokers.
* Systems to assist in fault diagnosis for items as diverse

as electronic circuits, automobiles and steam locomotives.
It is ironic that a field that owes much of its history to

research in medical computing should have grown to com-
mercial viability in industrial settings, whereas the Al compa-
nies have thus far largely avoided the medical marketplace.
By 1985 only three medical expert systems were being used
routinely in clinical settings. 1719 Of these, only one was a
commercial product18 and two functioned without requiring
direct use by physicians. 1'7"8 (A related program is the Uni-
versity of Utah's HELP system,20 a hospital information
system that incorporates decision-support functions by using
a representation scheme and reasoning mechanisms with sim-
ilarities to those in the expert systems cited.)

Although many of the reasons for this phenomenon are
logistic or sociologic, most are inherently scientific and have
to do with the complex issues that arise when conventional
expert system techniques are applied to high-stakes medical
problems about which knowledge is still limited, physiologic
models are incomplete and the uncertainty in both associa-
tions and interpreting data is severe.

Research Perspectives in Medical
Artificial Intelligence

For purposes of the following discussion, an expert
system will be assumed to be a consultation system that uses
Al techniques for encoding knowledge and solving problems
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with that knowledge. The key AI notions in such systems are
as follows:

* Symbolic rather than numeric representations of perti-
nent knowledge from the domain (field) ofapplication.

* General problem-solving procedures for using knowl-
edge stored in accordance with the prescribed conventions.

* Both general and domain-specific heuristics, or rules of
thumb, for limiting search and for dealing with areas in which
knowledge is limited or missing.

* Schemes, either numeric or categoric (algorithmic), for
dealing with the uncertainty in the domain.

The following sections outline several of the key research
and conceptual topics in medical AI research. Because the Al
notions listed above may not be familiar to physicians, they
are clarified with medical examples at appropriate points
within the text.

Knowledge and Heuristics
The distinction between "data" and "knowledge" is gen-

erally emphasized in expert systems work. Computer data
bases are a familiar concept-that is, collections of individual
observations or data points; what, then, is a computer knowl-
edge base? First, factual knowledge tends to be drawn from
analyzing data. As such, it is frequently subject to controversy
and colored by personal experiences. All physicians are fa-
miliar with scientific debates about how a given set of data
ought to be interpreted; the 1970s controversy regarding oral
hypoglycemic agents after the University Group Diabetes
Project reported its results is only one such example. A com-
puter data base might record the observation that "Mr John
Jones had a blood pressure of 180/110 mm of mercury on
August 3 and a myocardial infarction on September 15." On
the other hand, a knowledge base that included information
derived from analyzing observational data in a data base
might record thefact that hypertension is associated with an
increased risk ofcoronary artery disease.

Not all knowledge comprises factual associations of this
type, however, and intelligent behavior relies in large part on
other categories of knowledge. For example, shared knowl-
edge of the world often provides a background of common
sense, definitions and assumptions that hardly seem worth
mentioning in normal conversation but which must be explic-
itly encoded in a computer if its behavior is to be appropriate.
Consider, for example, the common-sense knowledge that
only women can be pregnant, or the assumption that seriously
ill patients are more likely to do well if they are admitted to
hospital. We generally do not quote data to support such
knowledge; the statements are assumed to be widely accepted
as true and hardly need to be defended.

Another category of knowledge is experience-based heu-
ristics, or "rules of thumb." Such knowledge is often rather
personal, although it can be taught. For example, there is a
common heuristic that it is wise to insert an intravenous line
early when evaluating an acutely ill patient in an emergency
room. The line can always be removed if not needed, but can
be indispensable if a patient's condition deteriorates quickly.
Matters of personal and professional style also often have a
heuristic character to them-for example, the notion that it is
wise to build rapport by conversing with an anxious patient
before proceeding to the physical examination.

Fortunately there is also a growing number of medical

topics for which we have excellent scientific (mechanistic)
models that explain aspects of both normal behavior and dis-
ease. Such models can be crucial for expert problem solving
because they provide a basis for reasoning from first princi-
ples when a patient presents with an unusual diagnostic
problem or a difficult management dilemma. Such models can
be qualitative ("Insulin controls blood sugar levels by regu-
lating the uptake of glucose by cells") or quantitative ("Bi-
carbonate may be determined from pH and partial carbon
dioxide pressure using the Henderson-Hasselbalch equa-
tion"). When an expert system functions in a domain for
which good models exist, its performance may be greatly
enhanced if such information is encoded in its knowledge
base.

Symbolic Representation of Knowledge
Although a number of schemes have been used to repre-

sent expert knowledge symbolically in a computer, the rule-
based approach is perhaps the most widespread and straight-
forward. Other representation methods can be studied in any
of the several excellent textbooks on artificial intelli-
gence.2"22 Rules are conditional "if-then" statements that
indicate circumstances under which conclusions can be drawn
or actions taken. Rules can be categorized in several ways,
but for illustrative purposes it is useful to think of four major
types:

* Definitional-for instance, "If a patient is male, then
the patient is not pregnant or lactating."

* Cause-to-effect-for instance, "If there is an elevation
in the serum parathormone level and the patient has normal
renal function, then anticipate decreased urinary calcium and
increased urinary phosphate levels."

* Effect-to-cause-for instance, "If a patient has recur-
rent calcium oxalate kidney stones, then consider the diag-
nosis ofprimary hyperparathyroidism."

* Associational-for instance, "If a patient has Gram-
negative sepsis and has been seriously burned, then the of-
fending organism may be Pseudomonas aeruginosa. "

Note that an associational rule tends to describe a relation-
ship for which detailed causal mechanisms are not well under-
stood; much medical knowledge is of this type. In addition,
only the first of the four sample rules shown allows a conclu-
sion to be reached with certainty (a so-called categorical
rule). The others all lend evidence to a conclusion but do not
provide definitive proof. Thus, it is sometimes necessary for
the knowledge represented in expert systems to include indi-
cations of the degree of certainty associated with the relation-
ship described. AI researchers have experimented with a
variety of techniques for dealing with weights of evidence.23
These vary from classic probabilistic measures and the use of
Bayes's theorem, to ad hoc scoring schemes and even to ef-
forts to avoid numeric weights altogether.

Rules such as those just described may be encoded in a
computer's memory using any of a number of programming
languages. The most commonly used for AI work have been
LISP and, more recently, PROLOG. Unlike traditional pro-
gramming languages like FORTRAN, LISP and PROLOG
have been designed more for their ability to express logical
relationships and to manipulate symbols than for an ability to
compute numbers.
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Reasoning With Symbolic Knowledge
Encoding knowledge in a computer serves no purpose if it

cannot be retrieved and applied effectively. Much ofthe work
in artificial intelligence has therefore focused on how to ac-
cess and use knowledge that is stored in large and detailed
knowledge bases. As previously mentioned, psychological
studies have been influential in this work because of the rec-
ognition that human beings have a remarkable ability to select
and apply relevant knowledge from the vast amount of infor-
mation they have acquired over a lifetime. People have devel-
oped effective search heuristics for quickly focusing on
pertinent facts while avoiding tangential considerations; we
obviously do not sequentially consider everything we know
until we discover a fact that applies to a given problem.

Reasoning methods in AI systems are frequently placed in
one of three categories: goal-directed (also called backward
chaining), data directed (also called forward chaining) and
hypothesis-directed.24 In a goal-directed system, rules are
selected for consideration because of what they might con-
clude (if true) that is relevant to a diagnostic or management
problem-that is, because of the "then" portion of the rule.
For example, if a system needed to identify an organism, it
might select for consideration the sample associational rule
shown earlier. In a data-directed system, rules are selected for
consideration because they use information that has become
available about a problem-that is, because of the "if' por-
tion of the rule. For example, if a physician reports that a
patient has a calcium oxalate kidney stone, a data-directed
system might then invoke the sample effect-to-cause rule and
add hyperparathyroidism to the differential diagnosis. A hy-
pothesis-directed system, the type that most closely mimics
the hypotheticodeductive behavior mentioned earlier, begins
with a data-directed invocation of initial hypotheses but then
selects additional rules for consideration based on the set of
active hypotheses. This notion is similar to letting a differen-
tial diagnosis for a case guide subsequent data collection,
which in turn allows the diagnostic hypothesis list to be re-
fined.

In recent years system designers have often sought to
avoid the constraints of being committed to any single prob-
lem-solving technique. One method for doing such "opportu-
nistic reasoning" has been the notion of a "blackboard
model"-a working area in a computer's memory that cap-
tures the full scope of a problem and allows the problem-
solving mechanism to select whichever reasoning technique
and knowledge source are more likely to be useful at a given
point. The ONCOCIN system described below uses another
type of mixed reasoning strategy. More complete discussions
ofthe alternate approaches can be found in sources such as the
three-volume Handbook ofArtificial Intelligence.25

Acquiring and Encoding the Knowledge
Exclusively focusing on representing knowledge and

using it within a computer would ignore a key additional
issue-how the knowledge for a system is acquired and for-
mulated. It is in this area that much of the expert systems
"mystique" has evolved. Persons who work with experts to
structure and encode their knowledge of a domain have been
dubbed "knowledge engineers." There is little doubt that the
process of mapping the ill-structured knowledge of a domain

such as a medical subspecialty into a form suitable for ma-
chine encoding is among the most difficult and time-con-
suming parts of the expert system building process. Not only
must knowledge engineers be familiar with the technical de-
tails of the computational tools available, but they must also
be willing to make a major commitment to learning enough
about the technical domain of an expert so that discussions of
sample problems can be substantive and detailed. It is a spe-
cial breed of programmer who is able to facilitate this trans-
formation of key elements of expertise from a collaborator's
mind to a computer knowledge base.

In recent years the knowledge engineering "bottleneck"
in expert systems development has encouraged researchers to
develop prototype tools that permit experts to "teach" a com-
puter directly about their specialties. The earliest work ofthis
type was a system named TEIRESIAS that allowed infectious
disease experts to update and edit the knowledge base for the
MYCIN system by critiquing MYCIN's performance on
sample cases and entering in English either new rules or modi-
fications to old ones.26 More recent work on knowledge ac-
quisition has been exploring the use of graphical techniques
for defining knowledge. Diagrams on a computer screen,
coupled with manually controlled interactive mechanisms-
such as touch screens, light pens or "mouse" pointing de-
vices*-can be made intuitive, permitting experts to outline
their knowledge without doing extensive keyboard typing.

Model-Based Reasoning
As was mentioned earlier, medical research is increas-

ingly providing us with mechanistic explanations for phe-
nomena that were once poorly understood. As we gain greater
insight into why and how the body works the way it does,
experts increasingly use such mechanistic knowledge in
reaching decisions, especially when reasoning from first prin-
ciples to develop creative solutions to unusual or aberrant
problems. If computer-based systems lack such knowledge
and the ability to use it, their performance is inherently lim-
ited. The encoding and use of causal knowledge has accord-
ingly become an area ofemphasis in medical Al research.27'28
Although mathematical modeling has involved medical infor-
matics researchers for several decades, the use ofmore quali-
tative models, or models that combine qualitative and
quantitative techniques, is a relatively recent development.

When underlying mechanistic models are vague or nonex-
istent, physicians are forced to reason using empiric associa-
tions such as those reported in clinical studies. Much of the
knowledge ofmedicine is ofthis type. Medical AI researchers
have accordingly also begun to look at how expert systems
might reason using the kinds of data found in the clinical
literature.29 In this work the "models" are those of statistics
and clinical trials rather than mechanistic explanations of
observed phenomena.

The Logistics ofHuman-Conputer Interaction
As medical artificial intelligence has begun to move from

research laboratories into clinical settings, there has been a
growing emphasis on logistic and design issues that will en-

*A "mouse" is a mechanical device named for the taillike cord that connects it to
the computer terminal. The user rolls it on the adjacent desktop to control the location
of a pointer on the display screen. Items of interest are selected by moving the mouse
so that the pointer on the screen is positioned over them and then pressing a button on
the top of the mouse.
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courage physicians to use computers and assure that they are
viewed as a helpful tool rather than as a hindrance to effi-
ciency or as a professional threat. For example, there has been
an emphasis on giving advice systems an ability to explain
their reasoning, a requirement that seeks to clarify and em-
phasize the physician's role as the ultimate decision maker in
patient management.30 There has also been a large and
growing research effort in the area of human-computer inter-
action, with studies of alternate interactive techniques (such
as keyboards, number pads, touch screens, mouse pointing
devices, light pens, speech input) and time-motion studies of
clinical settings to provide insight into how best to integrate
computational tools in routine patient care environments. It is
highly likely that advances in such areas will be as important
to the clinical impact of decision-support technologies as will
be progress in the fundamental research topics mentioned
earlier. A related issue is the inherent resistance to using
computers that is frequently mentioned by physicians; until
this can be overcome through education and experience, it is
likely that medicine will remain among the last areas to benefit

from the new decision-support technologies that are begin-
ning to have an impact in other areas of science and society.

An Example of an Expert System
ONCOCIN is an advanced expert system for clinical on-

cology that has been under development at Stanford Univer-
sity School of Medicine since 1979. * It is designed for use
after a diagnosis has been reached, focusing instead on as-
sisting with the management of patients with cancer who are
receiving chemotherapy. Because anticancer agents tend to be
highly toxic and because their tumor-killing effects are rou-
tinely accompanied by damage to normal cells, the rules for
monitoring and adjusting treatment in response to a given
patient's course over time tend to be complex and difficult to
memorize. ONCOCIN integrates a temporal record of a pa-
tient's ongoing treatment with an underlying knowledge base

*The author is principal investigator for the ONCOCIN project, an effort by
physicians and computer scientists under grant support from the National Library of
Medicine and the National Institutes of Health's Division of Research Resources. L.
Fagan, MD, PhD, is Project Director, and oncology collaborators include C. Jacobs,
MD; R. Carlson, MD; B. Sikic, MD, and R. Lenon, MD.

Figure 1.-ONCOCIN's electronic flow sheet: The computer's display screen simulates the appearance of a familiar paper flow sheet. Two
sections ("windows") of the form are shown open: "hematology" and "disease activity by site." Closed sections (labeled horizontal bars) may be
opened by simply selecting one or more of them with a mouse pointer. In this figure, the physician is logging in the patient's Karnofsky status in the
right-hand column of data for the current clinic visit (September 4, 1985). A customized menu register is displayed (see arrow pointer at middle
right, controlled by the mouse), and a dark "explanation window" at the top of the screen shows the meaning of the various options for the current
data field.
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of treatment protocols and rules for adjusting dosage, de-
laying treatment, aborting cycles, ordering special tests and
similar management details. The program uses such knowl-
edge to help physicians with decisions regarding the manage-
ment of specific patients. This article cannot provide a de-
tailed description of ONCOCIN; other publications have
reported the basic system design,3t,32 the results of clinical
evaluations1933 and the nature of the physicians' interface.34
Instead, we will briefly describe how this system has ad-
dressed the AI research issues outlined in previous sections.

The Logistics of Human-Computer Interaction
A major lesson of past work in clinical computing has

been the need to develop methods for integrating a system
smoothly into the patient-care environment for which it is
intended.32 In the case of ONCOCIN, the goal has been to
provide expert consultative advice as a by-product of the
patient data-management process, thereby avoiding the need
for physicians to go out of their way to obtain advice. It is
intended that oncologists use ONCOCIN routinely for re-
cording and reviewing patient data on the computer's screen,
regardless of whether they feel they need decision-making
assistance. This process replaces the conventional recording
of data on a paper flow sheet and thus seeks to avoid being
perceived as an additive task. In accordance with its knowl-
edge of a patient's chemotherapy protocol, ONCOCIN then
provides assistance by suggesting appropriate therapy at the
time that a day's treatment is to be recorded on the flow sheet.
Physicians maintain control of the decision, however, and
can override the computer's recommendation if they wish.
ONCOCIN also indicates the appropriate interval until a pa-
tient's next treatment and reminds the physician of radiologic
and laboratory studies required by the treatment protocol.

Although the original ONCOCIN prototype was devel-
oped on a large time-shared computer,t9.3t it was clear that
disseminating the technology to clinics and private offices
would require transferring the system to smaller, less expen-
sive machines. ONCOCIN has thus been rewritten to run on
single-user LISP machines, computers optimized to run the
LISP programming language mentioned earlier. (We use
Xerox 1100 series workstations, but similar LISP machines
are available from several other manufacturers.) In addition
to large memories and enough power to handle systems the
size of ONCOCIN, such machines provide high-quality
graphics screens and mouse pointing devices. Thus, ON-
COCIN's interface for physicians has been redesigned to take
advantage ofthese advanced graphics capabilities.34

The interface (Figure 1) uses multiple movable "win-
dows" to simulate a traditional paper flow sheet used in an
oncology clinic. * Each window represents a section of the
flowsheet. Because not all the sections can be viewed simulta-
neously-as they would more than fill the screen-individual
windows can be "closed" or compressed when not in use. A
physician enters data on ONCOCIN's flow sheet using the
mouse pointer and specially developed software input devices
called "registers." Such registers are displayed on the screen
and manipulated using the mouse and its selection button. For
example, registers let the physician select an item from

*The interface system described here has been largely the work of C. Lane and C.
Wulfman, MS.

To determine the dose of methotrexate administered in
VAM chemotherapy in protocols 20-83-1 and 2091:

If: the serum creatinine level (in mg per dl) exceeds 1.5
Then: do not give methotrexate

Figure 2.-A simple ONCOCIN rule: Rules in ONCOCIN are condi-
tional statements that indicate circumstances under which a given
conclusion can be reached about a patient's management. The rule
shown is one of many that could simultaneously be applied in consid-
ering the case of a patient undergoing protocol-directed therapy for
small-cell carcinoma of the lung. VAM = VP-1 6-213 (etoposide), Adria-
mycin (doxorubicin) hydrochloride and methotrexate

choices (displayed on a "menu") or enter numbers (using a
graphic calculator keypad). Registers have been built for al-
most every kind of data input on the flow sheet; the comput-
er's keyboard is used to enter only textual information such as
names and addresses. Because such text information is gener-
ally entered once by a data manager when the patient is first
seen in the clinic, registers and the mouse pointer allow physi-
cians to avoid using a keyboard.

Although ONCOCIN at first appears to be designed as a
data-management tool for following events that occur over
time, there is an underlying reasoning element that uses the
data as they are entered, along with a patient's historical
information, to determine the recommended therapy for that
clinic visit. The knowledge for making such decisions is de-
rived from chemotherapy protocols and from the experience
of collaborating oncologists who have assisted in ONCO-
CIN's development. When the "chemotherapy" section of
the graphic form is opened at the end of the session (see
Figure 1), recommended drug doses are automatically filled in
on the flow sheet by the computer, and the explanation
window provides the reasons for any dosage attenuation, de-
lays in treatment or aborted cycles ofchemotherapy that have
been recommended. The physician may override such advice
by simply entering a different drug dose on the flow sheet in
lieu ofONCOCIN's suggestion.

Symbolic Representation of Knowledge
The internal knowledge representation for ONCOCIN is

based on the notion of decision rules such as those described
earlier. * There are hundreds of such rules in ONCOCIN,
some of which are specific to particular treatment protocols
and others ofwhich apply generally across all cancer manage-
ment strategies. Many encode management heuristics pro-
vided by oncologists and never explicitly stated in protocol
documents. A typical simple ONCOCIN rule is shown in
Figure 2. Such rules are internally arranged in a data structure
that reflects the hierarchic organization of the field of cancer
chemotherapy (Figure 3). By storing rules in the computer in
accordance with such hierarchic conventions, it can be as-
sured that knowledge is considered and applied only when the
context is appropriate. For example, the rule shown in Figure
2 is explicitly associated with the drug methotrexate, chemo-
therapy VAM (VP-16-213 [etoposide], Adriamycin [doxo-
rubicin] hydrochloride and methotrexate) and protocol 20-
83-1 or protocol 2091 (see Figure 3); it would never be con-
sidered if methotrexate were being administered in some other
situation.

*The knowledge representation scheme used on ONCOCIN has been largely the
work of S. Tu, MS; M. Kahn, MD; M. Musen, MD, and J. Ferguson.
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Reasoning With Symbolic Knowledge
The reasoning strategy used by ONCOCIN is guided by

the hierarchic structure of the knowledge base described ear-
lier. The focus of attention within the hierarchy at any given

time determines the reasoning context and thus the rules that
are likely to be pertinent. Because a physician may enter
information on the flow sheet in whatever order seems most
natural for a given case, however, the system's reasoning

Figure 3.-A portion of ONCOCIN's domain hierarchy: Relevant concepts in ONCOCIN's knowledge base are naturally organized according to
the hierarchy shown here. In this example, a protocol P involves treatment with chemotherapies A, B or C. Chemotherapy A requires administra-
tion of drugs Yand Z, whereas chemotherapy B uses drugs Wand X.

Figure 4.-The schematic description of a protocol entered using OPAL: Flow charts of this sort are entered by manipulating boxes on the
display screen and using the mouse pointer to indicate connections between them. The procedural descriptions correspond to flow diagrams
included at the beginning of most protocol documents. Individual boxes stand for events such as chemotherapy-for instance, VAM (VP-16-213
[etoposide], Adriamycin [doxorubicin hydrochloride] and methotrexate), POCC (procarbazine hydrochloride, Oncovin [vincristine sulfate], CCNU
[lomustine] and cyclophosphamide) or CAVP (cyclophosphamide, Adriamycin and VP-16-213)-or radiation therapy-for instance, prophylactic
cranial irradiation (PCI). The diagram shown here represents the schema for a protocol for small-cell carcinoma of the lung in use at our
institution. Note that cases are stratified and patients randomly assigned to one of two arms (A and B) designed to compare different chemothera-
pies (using VAM and POCC combined versus using CAVP), with subsequent randomization to assess the effect of PCI. CcOM = CCNU, Oncovir
and methotrexate; CR = complete remission
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strategy must also respond to patient data as they are entered.
Schemes have accordingly been devised so that data entered
by the physician are remembered but not actually used until
they are needed by the hierarchically guided reasoning
system. To minimize conflicts between the data the physician
chooses to enter and the information needed by the reasoning
system, the interactive screen environment suggests pathways
through the flow sheet that will result in the most efficient
consideration of a given case (ONCOCIN highlights those
regions of the screen where it would next like to see data
entered). But the ultimate organization of the data-entry pro-
cess is intentionally left to the physician. Thus, ONCOCIN's
reasoning strategy is determined both by the nature of the
interaction between a physician and the computer-based flow
sheet andby the hierarchical organization of its knowledge. It
accordingly does not fit cleanly into any single reasoning
category but has both data-directed and goal-directed fea-
tures.

Drug Combination:

Drug:

POCC

Acquiring and Encoding the Knowledge
Early knowledge-base development for ONCOCIN was

arduous and time-consuming. It was difficult for project
knowledge engineers to study chemotherapy protocol docu-
ments and to encode their contents in accordance with ON-
COCIN's knowledge representation scheme. In addition,
there were frequent gaps in protocol logic that required exten-
sive sessions with oncology collaborators who helped inter-
pret the several areas in which protocols were ambiguous,
incomplete or internally inconsistent. As the structure of the
oncology domain became clearer (see, for example, the
simple hierarchy in Figure 3 that emerged from the knowl-
edge-engineering process), we developed the notion of a
knowledge acquisition system that would permit expert clini-
cians to enter protocols directly onto ONCOCIN's knowledge
base. The resulting system, known as OPAL, has been used
experimentally by the collaborating oncologists on the

Subcycle: A
PROCARBAZ INE

Change Table Format?

|Delete Table?

>= 150 100 - 150

>= 3.5 100% of STD
3.0 - 3.5 75% of STD Delay
2.5 - 3.0 Delay Delay

< 2.5 Delay Delay

ISpecify Abort Info]

Platelets
(x 1000)

75 - 100 75

Delay C.Delay1__
Delayy Delay
Del ay. Delay
Delay D:elay

ISpecify Delay Info

Figure 5.-A sample OPAL form: Much of an interactive session with OPAL requires completing forms such as the one shown here. As in the
ONCOCIN interface (Figure 1), most entries may be completed by pointing at areas of interest and selecting from a customized register that
appears on the screen. Here an oncologist has entered a dosage-attenuation schedule for procarbazine hydrochloride when it is given in the A
subcycle of POCC (procarbazine hydrochloride, Oncovin [vincristine sulfate], CCNU [lomustine] and cyclophosphamide) chemotherapy. The
highlighted choice indicates that when a patient's leukocyte count (WBC) is greater than or equal to 3,500 per Al and the platelet count is between
100,000 and 150,000 per Al, 75% of the standard dose (STD) should be administered.
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project.* Early experience suggests it will greatly facilitate
the process of protocol entry and modification for ON-
COCIN.

OPAL is a graphical program for use by an oncologist
who wishes to enter a new chemotherapy protocol for use by
ONCOCIN or to edit an existing protocol.35 Although the
system is designed for use by oncologists who have been
trained in its use, it does not require an understanding of the
internal representations or reasoning strategies used by ON-
COCIN. The system may be used in two interactive modes,
depending on the type of knowledge to be entered. The first
permits the entry of a graphical description ofthe overall flow
ofthe therapy process (Figure 4). The oncologist manipulates
boxes on the screen that stand for various steps in the pro-
tocol. The resulting diagram is then translated by OPAL into
computer code for use by ONCOCIN. Thus, by drawing a
flow chart that describes the protocol schematically, the phy-
sician is effectively programming the computer to carry out
the procedure appropriately when ONCOCIN is later used to
guide the management ofa patient enrolled in that protocol.

OPAL's second interactive mode permits an oncologist to
describe the details of the individual events specified in the
graphical description. For example, the rules for adminis-
tering a given chemotherapy will vary greatly depending on a
patient's response to earlier doses, intercurrent illnesses and
toxicities, hematologic status and so forth. Figure 5 shows
one of the forms provided by OPAL for this type of specifica-
tion. It permits the entry of an attenuation schedule for an
agent based on a patient's leukocyte count and platelet count at
the time of treatment. Tables such as this are generally found
in the written version of chemotherapy protocols. Thus,
OPAL permits oncologists to enter information using familiar
forms displayed on a computer screen. The contents of such
forms are subsequently translated into rules and other knowl-
edge structures for use by ONCOCIN.

Model-Based Reasoning
Although the knowledge of cancer chemotherapy is rich

and complex, protocols seldom refer directly to underlying
models of drug action. The guidelines in a protocol are,
rather, high-level composite descriptions of expert advice,
based on the study designers' experience and biologic models
of the therapeutic agents and their mechanisms of action. We
have observed, however, that when protocols fail to cover a
complex clinical situation that arises for a given patient, ex-
pert oncologists will turn to underlying mechanistic models
and use them to assist in the decision-making process. ON-
COCIN has no such knowledge; it must therefore occasion-
ally decline to make a recommendation and instead refers a
physician to the study overseer for a decision about how to
manage a particular complex problem. It is accordingly a
long-range goal to add model-based expert-level reasoning to
ONCOCIN's performance.

Our research in oncologic model-based reasoning is em-
bodied in a program known as ONYX. t This system is based
on the observation that creative planning strategies in the
oncology domain (and many other fields) appear to involve a
three-step process36: (1) heuristically generating a small

*OPAL is largely the work of D. Combs, M. Musen, MD, and J. Walton.
tONYX is largely the work of C. Langlotz, MS; H. Rappaport, MD; S. Tb, MS;

M. Kahn, MD, and R. Bhatia.

number of plans, that is, plausible responses to the problem at
hand, (2) mentally simulating (also called "envisioning")
how a patient would respond over time if each of those plans
were carried out and (3) selecting a preferred plan based on
the likelihood of the various possible outcomes and the value
placed on those outcomes by the patient and physician. Step 2
in this process involves patient-specific simulation of tumor
pathophysiology and drug action but it also depends on recog-
nizing that the outcomes of interventions cannot be predicted
with certainty and that probabilistic predictions are more real-
istic. Thus, model-based probabilistic simulations in ONYX
are coupled to a decision analytic module that assists with the
third step in the process. Although the work outlined here is
preliminary, the proposed planning architecture appears to be
a fruitful area for basic research in medical artificial intelli-
gence.

Conclusion
As the ONCOCIN project shows, applied work in med-

ical expert systems typically touches on a broad range of
research issues ranging from logistic (such as system integra-
tion) to psychological (such as designing human-computer
interfaces) to theoretic (such as causal model-based rea-
soning). It is this melding of real-world needs with promising
technologies and challenging theoretic concerns that has made
the field of medical artificial intelligence particularly ap-
pealing to the physicians and computer scientists working in
the area. The long-term challenges are well recognized-such
as the need for mechanisms that will assure completeness and
currency of shared knowledge bases, or the need for inte-
grated computing systems that will allow physicians to access
a variety of expert systems and other computational tools
from a single workstation in their office or on the hospital
wards. Yet, it is only through enhanced educational opportu-
nities for health personnel that we will see the emergence of-
physicians who can identify the quality systems from among
those that are available and accept the computer's role as a
knowledge-enhancing tool rather than as a replacement for a
physician's own thoughtful assessments. It is ultimately an
informed professional community that will determine the clin-
ical impact of medical advice systems.

REFERENCES

1. Ledley RS, Lusted LB: Reasoning foundations of medical diagnosis. Science
1959; 130:9-21

2. Shortliffe EH, Buchanan BG, Feigenbaum EA: Knowledge engineering for
medical decision making: A review of computer-based clinical decision aids. Proc
IEEE 1979; 67:1207-1224

3. Thring AM: Computing machinery and intelligence. Mind 1950; 59:433-460
4. Moses J: Symbolic integration: The stormy decade. Commun ACM [Associa-

tion for Computing Machinery] 1971; 8:548-560
5. Lindsay RK, Buchanan BG, Feigenbaum EA, et al (Eds): Applications of

Artificial Intelligence for Organic Chemistry: The DENDRAL Project. New York,
McGraw-Hill, 1980

6. Szolovits P (Ed): Artificial Intelligence in Medicine. Boulder, Colo, West-
view Press (AAAS Symposium Series), 1982

7. Clancey WJ, Shortliffe EH (Eds): Readings in Medical Artificial Intelligence:
The First Decade. Reading, Mass. Addison-Wesley, 1984

8. Yu VL, Fagan LM, Wraith SM, et al: Antimicrobial selection by a computer:
A blinded evaluation by infectious disease experts. JAMA 1979; 242:1279-1282

9. Buchanan BG, Shortliffe EH (Eds): Rule-Based Expert Systems: The MYCIN
Experiments of the Stanford Heuristic Programming Project. Reading, Mass, Addi-
son-Wesley, 1984

10. Pauker SG, Gorry GA, Kassirer JP, et al: Toward the simulation of clinical
cognition: Taking a present illness by computer. Am J Med 1976; 60:981-995

I 1. Miller RA, Pople HE, Myers JD: INTERNIST- 1: An experimental comput-
er-based diagnostic consultant for general intemal medicine. N Engl J Med 1982;
307:468-476

THE WESTERN JOURNAL OF MEDICINE838



MEDICAL EXPERT SYSTEMS

12. Weiss SM, Kulikowski CA, Amarel S, et al: A model-based method for
computer-aided medical decision making. Artif Intell 1978; 1 1: 145-172

13. Elstein AS, Shulman LS, Sprafka SA (Eds): Medical Problem Solving: An
Analysis of Clinical Reasoning. Cambridge, Mass, Harvard University Press, 1978

14. Kassirer JP, Gorry GA: Clinical problem solving: A behavioral analysis.
Ann Intern Med 1978; 89:245-255

15. Campbell AN, Hollister VF, Duda RO, et al: Recognition of a hidden min-
eral deposit by an artificial intelligence program. Science 1982; 217:927-929

16. Duda RO, Shortliffe EH: Expert systems research. Science 1983;
220:261-268

17. Aikins JS, Kunz JC, Shortliffe EH, et al: PUFF: An expert system for
interpretation of pulmonary function data. Comput Biomed Res 1983; 16:199-208

18. Weiss SM, Kulikowski CA, Galen RS: Developing microprocessor-based
expert models for instrument interpretation, In Proceedings of the 7th International
Joint Conference on Artificial Intelligence. Los Altos, Calif, Morgan-Kaufmann,
198 1, pp 853-855

19. Hickam DH, Shortliffe EH, Carlson RW, et al: The treatment advice of a
computer-based cancer chemotherapy protocol advisor. Ann Intern Med 1985;
103:928-936

20. Pryor RA, Garner RM, Clayton PD, et al: The HELP system. J Med Syst
1983; 7:87-102

21. Winston PH: Artificial Intelligence, 2nd Ed. Reading, Mass, Addison-
Wesley, 1984

22. Charniak E, McDermott D: Introduction to Artificial Intelligence. Reading,
Mass, Addison-Wesley, 1985

23. Kanal LN, Lemmer JF (Eds): Uncertainty in Artificial Intelligence. Am-
sterdam, North-Holland, 1986

24. Shortliffe EH: Reasoning methods in medical consultation systems: Artifi-
cial intelligence approaches. Comput Programs Biomed 1984; 18:5-14

25. Barr A, Cohen P, Feigenbaum EA (Eds): The Handbook of Artificial Intelli-
gence. Los Altos, Calif, Morgan-Kaufmann, 1981 (vol 1), 1982 (vols 2 & 3)

26. Davis R: Interactive transfer of expertise: Acquisition of new inference
rules. Artif Intell 1979; 12:121-158

27. Patil RS, Szolovits P, Schwartz WB: Causal understanding of patient illness
in medical diagnosis, In Proceedings of7th International Joint Conference on Artifi-
cial Intelligence. Los Altos, Calif, Morgan-Kaufmann, 1981, pp 893-899

28. Cooper GF: A diagnostic method that uses causal knowledge and linear
programming in the application of Bayes' formula. Comput Methods Programs
Biomed 1986; 22:223-237

29. Rennels GD, Shortliffe EH, Stockdale FE, et al: Reasoning from the clinical
literature: The Roundsman system, In Proceedings of MEDINFO-86. Amsterdam,
North-Holland, 1986, pp 771-775

30. Teach RL, Shortliffe EH: An analysis of physician attitudes regarding com-
puter-based clinical consultation systems. Comput Biomed Res 1981; 14:542-558

31. Shortliffe EH, Scott AC, Bischoff AC, et al: ONCOCIN: An expert system
for oncology protocol management, In Proceedings of 7th Intemational Joint Confer-
ence on Artificial Intelligence. Los Altos, Calif, Morgan-Kaufmann, 1981, pp
876-881

32. BischoffMB, Shortliffe EH, Scott AC, et al: Integration ofa computer-based
consultant into the clinical setting, In Proceedings of the 7th Symposium on Com-
puter Applications in Medical Care. Washington, DC, IEEE Computer Society
Press, 1983, pp 149-152

33. Kent DL, Shortliffe EH, BischoffMB, et al: Improvements in data collection
through physician use of a computer-based chemotherapy treatment consultant. J
Clin Oncol 1985; 3:1409-1417

34. Lane CD, Walton JD, Shortliffe EH: Graphical access to a medical expert
system-Part 1I: Design of an interface for physicians. Methods Inf Med 1986;
25:143-150

35. Musen MA, Fagan LM, Combs DM, et al: Facilitating knowledge entry for
an oncology therapy advisor using a model of the application area, In Proceedings of
MEDINFO-86. Amsterdam, North-Holland, 1986, pp 46-50

36. Langlotz CP, Fagan LM, 'li SW, et al: Combining artificial intelligence and
decision analysis for automated therapy planning assistance, In Proceedings of
MEDINFO-86. Amsterdam, North-Holland, 1986, pp 794-798

DECEMBER 1986 * 145 * 6 839


